skip to main content


Search for: All records

Creators/Authors contains: "Seager, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Previous findings show that large-scale atmospheric circulation plays an important role in driving Arctic sea ice variability from synoptic to seasonal time scales. While some circulation patterns responsible for Barents–Kara sea ice changes have been identified in previous works, the most important patterns and the role of their persistence remain unclear. Our study uses self-organizing maps to identify nine high-latitude circulation patterns responsible for day-to-day Barents–Kara sea ice changes. Circulation patterns with a high pressure center over the Urals (Scandinavia) and a low pressure center over Iceland (Greenland) are found to be the most important for Barents–Kara sea ice loss. Their opposite-phase counterparts are found to be the most important for sea ice growth. The persistence of these circulation patterns helps explain sea ice variability from synoptic to seasonal time scales. We further use sea ice models forced by observed atmospheric fields (including the surface circulation and temperature) to reproduce observed sea ice variability and diagnose the role of atmosphere-driven thermodynamic and dynamic processes. Results show that thermodynamic and dynamic processes similarly contribute to Barents–Kara sea ice concentration changes on synoptic time scales via circulation. On seasonal time scales, thermodynamic processes seem to play a stronger role than dynamic processes. Overall, our study highlights the importance of large-scale atmospheric circulation, its persistence, and varying physical processes in shaping sea ice variability across multiple time scales, which has implications for seasonal sea ice prediction.

    Significance Statement

    Understanding what processes lead to Arctic sea ice changes is important due to their significant impacts on the ecosystem, weather, and shipping, and hence our society. A well-known process that causes sea ice changes is atmospheric circulation variability. We further pin down what circulation patterns and underlying mechanisms matter. We identify multiple circulation patterns responsible for sea ice loss and growth to different extents. We find that the circulation can cause sea ice loss by mechanically pushing sea ice northward and bringing warm and moist air to melt sea ice. The two processes are similarly important. Our study advances understanding of the Arctic sea ice variability with important implications for Arctic sea ice prediction.

     
    more » « less
    Free, publicly-accessible full text available November 15, 2024
  2. Abstract

    The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.

     
    more » « less
  3. Abstract

    Effective drought management must be informed by an understanding of whether and how current drought monitoring and assessment practices represent underlying nonstationary climate conditions, either naturally occurring or forced by climate change. Here we investigate the emerging climatology and associated trends in drought classes defined by the United States Drought Monitor (USDM), a weekly product that, since 2000, has been used to inform drought management in the United States. The USDM classifies drought intensity based in part on threshold percentiles in key hydroclimate quantities. Here we assess how those USDM‐defined drought threshold percentiles have changed over the last 23 years, examining precipitation, runoff, soil moisture (SM), terrestrial water storage (TWS), vapor pressure deficit (VPD), and near‐surface air temperature. We also assess underlying trends in the frequency of drought classifications across the U.S. Our analysis suggests that the frequency of drought class occurrence is exceeding the threshold percentiles defined by the USDM in a number of regions in the United States, particularly in the American West, where the last 23 years have emerged as a prolonged dry period. These trends are also reflected in percentile‐based thresholds in precipitation, runoff, SM, TWS, VPD, and temperature. Our results emphasize that while the USDM appears to be accurately reflecting observed nonstationarity in the physical climate, such trends raise critical questions about whether and how drought diagnosis, classification, and monitoring should address long‐term intervals of wet and dry periods or trends.

     
    more » « less
  4. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less
    Free, publicly-accessible full text available August 15, 2024
  5. Abstract

    In the equatorial and subtropical east Pacific Ocean, strong ocean‐atmosphere coupling results in large‐amplitude interannual variability. Recent literature debates whether climate models reproduce observed short and long‐term surface temperature trends in this region. We reconcile the debate by reevaluating a large range of trends in initial condition ensembles of 15 climate models. We confirm that models fail to reproduce long‐term trends, but also find that many models do not reproduce the observed decadal‐scale swings in the East to West gradient of the equatorial Pacific. Models with high climate sensitivity are less likely to reproduce observed decadal‐scale swings than models with a modest climate sensitivity, possibly due to an incorrect balance of cloud feedbacks driven by changing inversion strength versus surface warming. Our findings suggest that two not well understood problems of the current generation of climate models are connected and we highlight the need to increase understanding of decadal‐scale variability.

     
    more » « less
  6. Abstract Changes in the zonal gradients of sea surface temperature (SST) across the equatorial Pacific have major consequences for global climate. Therefore, accurate future projections of these tropical Pacific gradients are of paramount importance for climate mitigation and adaptation. Yet there is evidence of a dichotomy between observed historical gradient trends and those simulated by climate models. Observational records appear to show a “La Niña-like” strengthening of the zonal SST gradient over the past century, whereas most climate model simulations project “El Niño-like” changes toward a weaker gradient. Here, studies of these equatorial Pacific climate trends are reviewed, focusing first on data analyses and climate model simulations, then on theories that favor either enhanced or weakened zonal SST gradients, and then on notable consequences of the SST gradient trends. We conclude that the present divergence between the historical model simulations and the observed trends likely either reflects an error in the model’s forced response, or an underestimate of the multi-decadal internal variability by the models. A better understanding of the fundamental mechanisms of both forced response and natural variability is needed to reduce the uncertainty. Finally, we offer recommendations for future research directions and decision-making for climate risk mitigation. 
    more » « less
  7. Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change. 
    more » « less
  8. Abstract The Indian Ocean has an intriguing intertropical convergence zone (ITCZ) south of the equator year-round, which remains largely unexplored. Here we investigate this Indian Ocean ITCZ and the mechanisms for its origin. With a weak semiannual cycle, this ITCZ peaks in January–February with the strongest rainfall and southernmost location and a northeast–southwest orientation from the Maritime Continent to Madagascar, reaches a minimum around May with a zonal orientation, grows until its secondary maximum around September with a northwest–southeast orientation, weakens slightly until December, and then regains its mature phase in January. During austral summer, the Indian Ocean ITCZ exists over maximum surface moist static energy (MSE), consistent with convective quasi-equilibrium theory. This relationship breaks up during boreal summer when the surface MSE maximizes in the northern monsoon region. The position and orientation of the Indian Ocean ITCZ can be simulated well in both a linear dynamical model and the state-of-the-art Community Atmosphere Model version 6 (CAM6) when driven by observed sea surface temperature (SST). To quantify the contributions of the planetary boundary layer (PBL) and free-atmosphere processes to this ITCZ, we homogenize the free-atmosphere diabatic heating over the Indian Ocean in CAM6. In response, the ITCZ weakens significantly, owing to a weakened circulation and deep convection. Therefore, in CAM6, the SST drives the Indian Ocean ITCZ directly through PBL processes and indirectly via free-atmosphere diabatic heating. Their contributions are comparable during most seasons, except during the austral summer when the free-atmosphere diabatic heating dominates the mature-phase ITCZ. Significance Statement The intertropical convergence zone (ITCZ) is the globe-encircling band where trade winds converge and strong rainfall occurs in the tropics. Its rains provide life-supporting water to billions of people. Its associated latent heating invigorates the tropical atmospheric circulation and influences climate and weather across the planet. The ITCZ is located north of the equator in most tropical oceans, except in the Indian Ocean where it sits south of the equator year-around. In contrast to the well-known northern ITCZs, the origin of the southern ITCZ in the Indian Ocean remains unknown. This work provides the first explanation for how ocean surface temperature works together with processes in the lower and upper atmosphere to shape the unique ITCZ in the Indian Ocean. 
    more » « less
  9. Abstract

    On seasonal time scales, vapor pressure deficit (VPD) is a known predictor of burned area in the southwestern United States (“the Southwest”). VPD increases with atmospheric warming due to the exponential relationship between temperature and saturation vapor pressure. Another control on VPD is specific humidity, such that increases in specific humidity can counteract temperature-driven increases in VPD. Unexpectedly, despite the increased capacity of a warmer atmosphere to hold water vapor, near-surface specific humidity decreased from 1970 to 2019 in much of the Southwest, particularly in spring, summer, and fall. Here, we identify declining near-surface humidity from 1970 to 2019 in the southwestern United States with both reanalysis and in situ station data. Focusing on the interior Southwest in the months preceding the summer forest fire season, we explain the decline in terms of changes in atmospheric circulation and moisture fluxes between the surface and the atmosphere. We find that an early spring decline in precipitation in the interior region induced a decline in soil moisture and evapotranspiration, drying the lower troposphere in summer. This prior season precipitation decline is in turn related to a trend toward a Northern Hemisphere stationary wave pattern. Finally, using fixed humidity scenarios and the observed exponential relationship between VPD and burned forest area, we estimate that with no increase in temperature at all, the humidity decline alone would still lead to nearly one-quarter of the observed VPD-induced increase in burned area over 1984–2019.

    Significance Statement

    Burned forest area has increased significantly in the southwestern United States in recent decades, driven in part by an increase in atmospheric aridity [vapor pressure deficit (VPD)]. Increases in VPD can be caused by a combination of increasing temperature and decreasing specific humidity. As the atmosphere warms with climate change, its capacity to hold moisture increases. Despite this, there is a decrease in near-surface air humidity in the interior southwestern United States over 1970–2019, which during the summer is likely caused by a decline in early spring precipitation leading to limited soil moisture and evaporation in spring and summer. We estimate that this declining humidity alone, without an increase in temperature, would cause about one-quarter of the VPD-induced increase in burned forest area in this region over 1984–2019.

     
    more » « less